   TFunctionParser GraphicMaster
ParserWeb  TComplexParser MHGS CompCalc


Adding:  x + y  adds x and y  X  X

Subtracting:  x  y  subtracts y from x  X  X

Multiplying:  x * y  multiplies x and y  X  X

fac(n)  factorial of n, n!  X  
Dividing:  x / y  divides x through y  X  X

n div m n \ m  integer division  X  
rez(x)  reciprocal value of x  X  X

n mod m n % m  integer modulo  X  
modulo(x;y)  rest of division x/y  X  
Powers:  x ^ y  x to the power of y  X  X

sqr(x)  square of x  X  X

exp(x)  exponential of x  X  X

Roots:  sqrt(x)  squareroot of x  X  X

cbrt(x)  cubic root of x  X  
root(n;x)  nth root of x  X  
Logarithms:  ln(x)  log. with base e of x  X  X

lg(x)  log. with base 10 of x  X  
lb(x)  log. with base 2 of x  X  
log(b;x)  common log. with base b of x  X  
Trigonometric Functions:  sin(x)  sine of x  X  X

cos(x)  cosine of x  X  X

tan(x)  tangent of x  X  X

cot(x)  cotangent of x  X  X

sec(x)  secans of x  X  
cosec(x)  cosecans of x  X  
Arc Functions:  arcsin(x)  arc sine of x  X  X

arccos(x)  arc cosine of x  X  X

arctan(x)  arc tangent of x  X  X

atan2(y;x)  arc tangent of y/x  X  
arccot(x)  arc cotangent of x  X  X

Hyperbolic Functions:  sinh(x)  hyperbolic sine of x  X  X

cosh(x)  hyperbolic cosine of x  X  X

tanh(x)  hyperbolic tangent of x  X  X

coth(x)  hyperbolic cotangent of x  X  X

Area Functions:  arsinh(x)  inverse hyperbolic sine of x  X  X

arcosh(x)  inverse hyperboloc cosine of x  X  X

artanh(x)  inverse hyperbolic tangent of x  X  X

arcoth(x)  inverse hyperbolic cotangent of x  X  X

Statistical Function:  gauss(x)  standardized normal distribution of x  X  
normdist(x;mu;sigma)  normal distribution of x with average mu and standard deviation sigma  (X)  
erf(x)  error function of x  X  
inverf(x)  inverse of error function of x  X  
n over k bino(n;k)  binomial coefficient n over k  X  
poisson(μ;n)  Poisson distribution of n with average μ  X  
poicum(μ;n)  cumulated Poisson distribution up to n with average μ  X  
Random Numbers:  rnd(x)  random number in [0,x[  X  
rand(a;b)  random number in [a,b[  X  
poirand(μ)  Poisson distributed random numbers with average μ  X  
gaussrand(μ;σ)  Gaussian distributed random numbers with average μ and standard deviation σ  X  
Bessel Functions:  J0(x)  0th order of x  X  
J1(x)  1st order of x  X  
J2(x)  2nd order of x  X  
J3(x)  3rd order of x  X  
J4(x)  4th order of x  X  
J5(x)  5th order of x  X  
J(n;x)  nth order of x  X  
Integral Functions:  Si(x)  sine integral of x  X  
Ci(x)  cosine integral of x  X  
Ei(x)  exponential integral of x  X  
li(x)  logarithm integral of x  X  
Gammafunction:  gamma(x)  gamma function of x  X  
Lambert W function:  w(x)  Lambert W function of x, AKA product logarithm, omega function  X  
Stepfunctions:  theta(x)  =1 if x >0, else =0  X  
sgn(x)  signum function of x  X  
int(x)  integer part of x  X  
round(x)  x rounded to next integer value  X  
ceil(x)  x rounded to higher integer value  X  
floor(x)  x rounded to lower integer value  X  
Periodical Functions:  triangle(x)  triangle waveform (period 2π)  X  
sawtooth(x)  sawtooth waveform (period 2π)  X  
square(x)  square waveform (period 2π)  X  
Absolute Values:  abs(x)  absolute x  X  (X)

cabs(x;y)  absolute x+iy  X

Miscellaneous:  frac(x)  noninteger part of x  X  
max(x;y)  maximum value of x and y  X  
min(x;y)  minimum value of x and y  X  
odd(n)  =1 if n is odd, =0 if n is even  X  
gcd(n;m)  greatest common divisor of n and m  X  
lcm(n;m)  least common multiple of n and m  X 

ramp(x;a;b)  =0 if x<a, =1 if x>b, else continuation between a and b  X 

Bitwise and Logical Functions:  a and b
a & b  bitwise logic AND  X  
a or b a  b  bitwise logic OR  X  
(a) xor (b)  bitwise logic XOR  X  
bnot(a)  bitwise NOT  X  
not(a) !a  logical NOT  X  
a shl b a << b  shifts a b bitpositions to the left  X  
a shr b a >> b  shifts a b bitpositions to the right  X  
Relational Operators:  x = y  =1 if x is equal to y, else =0  X  
x < > y x != y  =1 if x is not equal to y, else =0  X  
x < = y  =1 if x is less or equal to y, else =0  X  
x < y  =1 if x is less than y, else =0  X  
x > = y  =1 if x is greater or equal to y, else =0  X  
x > y  =1 if x is greater than y, else =0  X  
IF Function:  if(c;x;y)  if condition c=1 then x, else if c=0 then y  X  
Properties of complex numbers:  abs(z)  absolute z  (X)  X

arg(z)  argument (phase) of z   X

re(z)  real part of z   X

im(z)  imaginary part of z   X

CC(z) ~z  complex conjugate of z   X

Mathematical Constants:  pi  circumference/diameter of circle  X  X

e  base of natural logarithms  X  X

C  Euler's constant  X  X

i  imaginary unit, sqrt(1)   X

TRUE  logical value 1.0  X  
FALSE  logical value 0.0  X  
INFINITY  symbolical value for ∞  X  
NEGINFINITY  symbolical value for ∞  X  
NaN  Not a Number (aborts evaluation)  X  
Number Formats: 
n  integer numbers  X  X 
x  floating point numbers  X  X 
z  complex numbers   X 
$n  hexadecimal numbers  X  